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ABSTRACT
The technique of Ralman filtering described by Ghil et. al. (1981)
is applied to a 2-point model., This note is intended to make this technique
more familiar at NMC and to point out its advantages and dangers. Two methods

of allowing for ignorance of true dynamical factors are illustrated.
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| Figure 1. Analysis errors as a function of true (#§ ) and
incorrect ( é:'z first guess errors.




1l. Introduction

Ghil, et., al. (1981) have used a linearized one-dimensional version

of the shallow water equations to explore the effect of Kalman filtering

on a meteorological data assimilétion system. This type of filtering is
a method of statistically estimating the truevstate of a dynamical system
whose evolution in time obeys a set of prediction equations and whose
state is observed at intervals so the estimated state can be corrected
(Gelb, et.al.,, 1974). The prediction equations deviate from the true
system by random noise, and the observations are expected to have errors.
The principal difference from a conventional meteorological data system
lies in the attempt by the Kalman procedure to predict "first gues§’error
covariances accurately. Little thought has yet been addressed to this
question in conventional meteorological systems. The paper by Ghil and
collaborators therefore represents an important step in raising our
awareness.

2. Effect of bad first guess error

Consider a single variable with a forecast value F and an observed
value 0, 1In the usual way, we form an analysed value A from these by a
linear combination:

A=F+a(O-F), b

This will have an error

a=AT=F+a(e-4)

(1.2)

where 'f' is the error in F and € is the error in @. The expected value

—

2 : L ra 2 2
of @ , denoted by a* , is given by (i=al) f* + " €? if f'and €
are uncorrelated. The value of@ that minimizes this is

——

_Fa
e (1.3)
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and produces an analysis error

~2 [2 -
F. £L e,
é;:'f iﬁi Wiy

(1.4)
| F o
Suppose however, that an incorrect value of ,» denoted by'g ) is

]
used. This would lead to a value of :

o' 9 .
j_" + &3 (1.5)

But the true analysis error is given by

a' = £+ «'te-£)

(1.6)
and we find that if f is the true error in F,
A b’ b ry — z
72 é‘[e‘f‘-l-(g*)] =
a'” = ’ 2 a”,
_— = 4
2
(e+7*) L.7)
T 5 2
Figure 1 delineates two regions of the 'F s 33' plane where a’?’ exceeds

-

either the true first guess error fb, or the observation error é;. It

is the second of these Whicp is most disturbing, since one could do better

in this region by omitting the prediction and analysis steps and simply

using the observed value O for A. This occurs only when the (incorrect)
—-— —

first guess error 3‘ is less than the true first guess error €* .

In the remainder of this paper a simple model with two degrees of
freedom will be used to illustrate the potential advantage of this
approach and to also illustrate the potential dangers. In this note I
will add a‘meteorological flavor by focusing attention on a dynamical
system that may be unstable, but I will often shorten the discussion by

omitting consideration of such matters as the requirement for an unbiased

estimate. The book edited by A. Gelb (1974) also contains a discussion of



these aspects in the many illustrations it contains of simple mechanical
and electrical systems.

3. The two point system and definitions

Let subscripts 1 and 2 denote two points at which analyses and obser-
vations are made. (In a more general treatment their location could vary
with time.) We introduce the following notation (i,j = 1 or 2)

7:‘,., = true state variable at point i, time n.

O
X

observation of 7;‘,,‘

6¢'/ll = observation error = Ol}n_t."'

A im- analysed value at point i, time n. (3.1)
a"" = analysis error = A(‘.—Edt

’:‘:‘. = forecast value at point i, time n.

—tn
n

forecast error = 6;"' 7;,,
An overbar will be used to denote an ensemble average. The ensemble we
have in mind is a large collection of independent runs of an assimilation
system, in which each run consists of repeated iterations on n of two
successive steps:

An-1 =(prediction =p Fn

Fp + 0, ==(analysis)pA,

(3.2)

The ensemble average is taken, at fixed /M , over all of the runs.
We will make several uses of the following relation. Let /K; and /Iz
represent any of the error quantities €,a, or f. Suppose y and z are

defined as fixed linear combinations of /f, and lﬂa :

y = C1°*xp + Covxp + Ry»

(3.3)

Z CB'Xl + C4‘X2 + RZ’
where we have also added a random variable R ("noise"™). If these

equations are multiplied and then the statistical average performed, we



obtain

4= CC A4, + (CETGG )M +CC 7, v RA .0

if R is uncorrelated with 4/, and /Fi . In other words, the linearity of
(3.3) enables the covariance vz to be computed from the covariances

. — )7-—11 — The's

A s quQ » Sy and 424Q . Tegme is a powerful result, but clearly
depends on the linearity of (3.3) and the independence of the noise R.
Its power results from the fact that while we cannot know the individual
errors 46 and 4&_in (3.3), we may be able to specify their covariances

in (3.4).

4. The prediction system

In order to make use of (3.4) we need a linear prediction system. A
simple one that is not devoid of meteorological meaning can be fashioned
from a moving wave model: ﬂt
q’s/,y,()z comsl-c cm (hy-cot)

= Al)cady + BIt).au Ax (4-1)

where

r
Alt)s cm«:i“«a’J 7
| t
Blt)= comst- ¥ aid at (4.2)

A and B satisfy the differential equations

dAJdt = 24 -8

(4.3)

dB/dt = am tewh

If the assimilation times are denoted by t = n4t, n = 0,1,...,etc., the

solution of (4.3) is

el ) (4.4)



where

Adt 24t

v=e cnwttt )/= e emwdl (4-3)

Alternatively, we can imagine(4.3)being solved by finite differences
in time. 1If differences over n, n + 1 are used for the d/dt terms, and
averages over n, n + 1 are used for the terms on the right side. of (4.3)-

" i.e., an 7 Aimplicit forecast method — one arrives at the same time - stepping

procedure as (4.4) except that 'z/and/u are replaced by

v = L= ()] [0-0) et | K

-/ (4.6)
M R [n—.l)’-bw’]

in Which[ and AV are defined byl
A= 2ot/ , = w At/ . (4.7)

Equations (4.4) are taken as the approximate equations of the true
state, and their approximate character is assumed to be representable by

simply adding random noise r to obtain the behavior of the true state Ty,

Tos
‘I;Aw[ g 2}7;“ 7M-';m 2,
' (4.8)
7‘;’;"' :/“Tfm V-I;/m ACEE
T

The computational stability is assured by the fact that 2)2-_5/'(/7'

approaches |+ 2 4T as A~ o .



The Ghil, et. al. approach is now to assume that the deterministic prediction

system 1s used for the assimilation system, without the noise.
Fooos ~uh
! M v AM M am )

(4.9)

EMM = oM LY '42.,

r is omitted from (4.9) because it is unknown in detail, so that (4.9)

then gives the best individual estimate of Tﬁmil . Subtraction of (4.8)

from (4.9) gives the error prediction system

-FMM TV A T —/L'/ ¢.10)

-(‘Zmu = /AQM’ *—y&im -Aa. :

Following the technique described at the end of 'gection (3) now gives us a

prediction formula for the first guess error covariance (fifj)n+l as a

me—
function of the analysis error (aiaj)n at the previous assimilation time:

‘F‘ 'f, Mé = v* a4, "'7“7 4G m "R’;“ q,dxm 4,2,
Y 4 — 2 —— ——— 4.11
b fouer = PR AT+ VO YU 4 ¥ (41D

& GLMH s (Y 27‘1) q,Z:M f"/"“ ( ql?l-m— 4, a’»m) *Az

We have assumed no correlation between rj and aje

Ghil, et.al. find it necessary, in their use of a linear shallow
water system to introduce a Rossby-wave filtering step. This step can be
omitted here because according to Phillips (1981), analyses are to be
analyses of slow modes only, observations are to be used only after they
have had fast modes subtracted, and the first guess error covariances
are to refer to slow mode errors only. (4.8) and (4.9) therefore are to
be interpreted as referring only té slow mode prediction. In fact all

errors herein — observations, analyses and forecasts - refer only to



. slow mode variables.
5. i

The analysis system

In the approach described by Ghil et. al., this is identical with
the familiar optimum interpolation system used meteorologically, except
that no approximation will be made in the first guess error covariances.
To derive it in the present context, we first set up the equations:

A = F +x(-~ )1-5/0 =,

/

A.\= s+ Y0 F)‘lgld Fz) (5.1)

All quantities are at a common time. These express the desired analysis
as being equal to the first guess plus correction terms that depend on the
differences between the observations and the first guess. By subtracting
. T; from A;, Fy, and 04, we obtain the error relations
£, +ot (&- €) +@ (5,,’{,,), (5.2)
a,- $1¥(e-1)48te,-1,).
We squate these and take the ensemble average as in (3.4). For simpliecity,
we assume that first guess error fj and observation errors €/are not
correlated. (This assumes that At is not too small in the prediction
system or that GCM is:ugorrelated with €. . ). We then choose &

tmet

and 8 so as to minimize ag aj, and choose ¥ and to minimize dpaz. The
result s x= [+ KEIOE (G5 14E)08] 4,
= L (% -au 16 )74
g = [ €€ 4§ -¢¢, f-( 7 -4 (5.3)
@ [(eg146)EE - (65, TRy
. = (66 )G H{E) - (64 <1 4t)°

(The denominator [_\ is positive.)



. The resulting analysis error covariances can be evaluated by
substituting these into the squared forms of (5.2). One finds (after
some algebra)2 —

a,e = (-2) 44 -ﬂ“:ﬂ,
a’aaﬁ = (- HEE -7 ) (5.4)
= (1= J)H -8£f = (- J){ -y 41 .
Qur system is now complete, if we can assign values to
a) The prediction coefficients v a’nJ}o . —
e B e, W . T Ah
T & 6 ¢, )

———
That is to say, given a set of analysis errox aiaj)n, for the nth assimila—

tion time, the prediction system (4.11) predicts the first guess errors

'F. ‘"j'am at assimilation time n + 1. Then (5.4) — with the definitions

2 At NMC, the “"diagonal" analysis errors 3,—131 and ?1_2_.;2 are calculated in

the ITSOL subroutine. The value of ;1—-32 is ignored, however, since correlation
between forecast errors and correlation between analysis errors are prescribed.
It may be useful to relate the specific notation used here to the more gener-

al notation used in the paper by Ghil, et al. and the book by Gelb. Our analysis
weights 9(, 6 ﬂ’ [ correspond to their "Kalman gain matrix” K .

The first guess errors ". '6“ at assimilation step #®  correspond to

error _
theiracovariance matrix Pk ("‘) at step k; . The analysis errors
Qa qJ m are equivalent to Ph ( 'l') . In their treatment the vector of -
observation is given as a linear function (their matrix H ) of the vector

of true state var :iables (plus, the observation error vector). In our case H
is an identity matrix. In a normal grid point model, however, H would

. be needed to interpolate between observation and grid point location.
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(5.3) - enables the &, Q. to be calculated for the n + 1 assimilation
¢ ) At

step.

This system is very stable when the noise r2 is not zero. Steady

— emmnm—

states in which fjf4 and ajaj no longer change from n to n + 1 are redched

quickly in few cycles i!f r2 » 0. An analysis of this is presented in

the Appendix for the special case of G:G—, = é;-% = é" G;—;;-’ e, wrth ro_ﬁ =

y&v;‘.-;/t't) A,&:d' In this case the steady state values of f;f, and
a'I"z are zero, and f-—1-f1 = f-Z_EZ’ a?a"i = a'z_aiz. For large rZ with fixed
€® , formulas (4.9) and (A.11) show that

BRreo: ‘

) é
— z & &
Q.Q, -9 € - "—; + 0 (Aq)

s (5.5)

The prediction system is here dominated by the large random forecast
noise, but the Kalman method is still able to reduce the effect of this
potentially large error source to a level where the resulting errors are
somewhat less than the observational errors. The prediction system has
been told the correct value of r2, it must be remembered.

For r2—> 0 with fixed Gz the limits are more complex, and depend on

o.
a. 0‘:/(\“'3)? - I (a neutral wave)

- } 4
a.e, > er-32° f—O[f—)

(5.6)

(As shown in the Appendix, this state is approached very slowly.)



11

b. o= /A?i- vl P (damped wave)
2 2 /:."]
-_— 2 [ 2
P —— = —— —
%% I~ oo’ O(G") ' (5.7)

c. o =/ulrv‘ b I (amplifying wave)

a,4q - € (.i‘::_) r(r_') + 0(’ ) (5.8)

(These three cases agree with the equations (4.7c) and (4.7d) of Ghil,
et.al., for the noise-free one-variable system.) 1In all cases ajaj is less
than the observational error €% » as required by (A.11). The value for

zﬁgl in the steady state is significantly less than €® however only for

the case of small rZ2 and a wave that does mnot amplify too rapidly. Since

(A.10) for the steady state can be written as3

—

at € £4 )

!
—__-':‘_‘:'"l“’:

we see that this can only be achived by f1f1& €% , which requires
small values of r2. (It will be seen in section 7 that this possibility
is greatly limited when 3 and /{, are not known precisely.)

6. Comparisoﬁ with NMC practice

Although the previous sections have considered only a 2-point system,
it is possible to use it to expose the differences between the Kalman
approach and the analysis methods at NMC. One obvious difference is that
in (5.3)-(5.4) all observations are used in analysing each variable,

whereas in practice only those close to the analysed point are used.

3 This is an example of the relation (4.2-19) in Gelb.



12

This is a limitation that is now becoming understood as a feature to be
minimized,as far as computer power will allow, and we therefore ignore it here.
The computation of QI;; in (5.4) is not a feature of the NMC system,

however. It cannot be ignored in (5.4) because §Iaén is needed in (4.11).

But at NMC the equivalent of (4.11) can be characterized as

=7 —_ ~ 2
thom, = @4, t & y
m— — (6.1)
‘ea‘(b Al < a‘azm-r 61
—_— I /Y
_ €€ =P [RG44]

G2 represents an assumed growth of error during the time between up-date
analyses. In this role it is analogous to the noise terms ;Igznand rE;E
in (4.11). ,9 in (6.1) denotes a correlation coefficient computed from a
reference set of forecasts verified over the United States. As such the
forecasts on which it is based were in turn based on analyses whose
errors reflect the excellent data from the continental rawinsonde
network. We cannot expect this fixed /D.to reflect adequately the partic-—
ular data mix present in other parts of the world and on every assimilation
analysis #t . |

The potential importance of this correlation can be seen in the
analysis coefficient equations (5.3). /? and a’ in those equations
represent the analysis weight for observation 2 in the analysis at point
1 and for observation 1 in the analysis at point %. The formula for[? s
for example, can be rewritten as

B =

(6.2)

é’g \(.?z Eﬁ. f e €
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€ e
where /9 and fi denote the correlation coefficients based on fifa
and 6,-;; . It seems reasonable that there will often be a strong
tendency for similarity in the ratio of first guess rms error at 2 points
to the ratio of rms observing error at those two points. The size of /?
is then proportional to the differences between P aqd f . The latter
is prescribed (or at least assumed so!) for the observing system, whereas

f may vary from one assimilation time to another as data mixes
change.
The practical significance of the above argument for the importance of

predicted as opposed to climatological first guess error correlatiomns

remains to be seen. The following section records an initial step toward
considering this point.

7. Comparison with an approximate system

This can be done by constructing an approximate version of this simple
two—point model patterned along NMC lines', and by evaluating the true
error of the analyses made by this system. |

With respect to the prediction equations, the approximate system will

replace (4.11) by

~ - z S ———

{'_ﬁ w5 ¥ Gl TS, (7.1)
2 — —

{b{amh v aia:\m 4 /g/%_)

Al
[[]
i -
from——y
|
uh
=
| —
N

where P is a precomputed correlation coefficient that is kept fixed during
a "run". (7.11) ignores the /ﬂ, effect in (4.4), as if the "wave" was
not translating and forecast errors were a purely local process.

The approximate system will use the optimum interpolation equations
(5.3)-(5.4), except that the last equation in (5.4) is irrelevant. How—

ever, the equations (5.4) only compute the apparent error of the approx-—
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imate system. It is more important for our purpose to know the true
error of the approximate system. This can be &one by running a parallel
evaluation system. This will imitate the 12-hour forecast errors that
are computed at NMC by comparing forecasts with verification data and‘
will be similar to the computation of ﬂ_:;z in section 2. This evalu—
ation system will use the "correct” prediction equation (4.11) to
compute the true first-guess error of the approximate system. The true
énalysis errors of the approximate system that are used on the right

side of (4.11) must be derived by returning to (5.2). In this special

use of (5.2):

A. o, 6/ #, ‘ are the coefficients computed by the approximate
system according to (5.3), using the apparent first guess error
covariances (7.1) of the approximate system.

B, fifj is replaced by the true first guess error of the approximate
system.

ge—— 3 . : .
For example, the true ajaj analysis error of the approximate system derived

from (5.2) is given by

N R W S S 4
ia = §§ + L (EGTEN)r (664 E)
ard (7.2)

~2[« 4% v e €t - wpreE r €3],

where @ and (3 are computed according to A above, but fifj has been
computed from (4.11) using values of é;:} from (7.2). 1In this way the
approximate system is associated with two sets of error statistics — the
apparent set that it "thinks"” 5re correct and the “"true" set.

Numerical exploration of the iterative use of (4.11) and (5.3)-(5.4)
shows that a stable stationary state is attained very quickly when AL&)’Q
and that this state is independent of the a;Z} (or f;;;) that is

assumed at n = 0. (The equilibrium state is derived mathematically
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in the Appendix for a simple choice of e;z;. and rirj.

The tests described in this section used the following choice of parameters.

e._é' = 2/3 ) 6:2‘; = 'I/3 e'éa

J
A8 =1, A s I, 44, =0
w - 34075 (7.3)

= In2 = 2.5 days,
At: o8 Jays.

a» ¢
]

The finite—difference forms (4.6) were used, with the result that 2/ =
0.63231 and & = 0.91833.4
The complete Kalman system under these conditions quickly arrives at

the stationary state

aja; = 0.489045
Gyap = 0.743905
d1ay ==0.027396 (7.4)
f£1; = 1.842071
f5E, = 1.690657
fK = -0.079706
where fk = (f fl x f ) -1/2,

The approximate system was run with the same choices of (7.3), as
described earlier in this section, for five arbitrary preassigned values

of /D ( -.6, -.3, 0, +.3, +.6) and a special value. This special value

4 These correspond to use of the exact form with a period and doubling
time of 3.25 and 3.18 days instead of the 3 days and 2.5 days given

in (7.3).
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was obtained by imitating an "off-line” empirical evaluation of f’ . A
run using /9 = 0 quickly settled into a steady state in which ,9

in the evaluation system was f% » This value was then used as,b in a

second run of the approximate system and produced a new value ’9; in

the evaluation system. f& was then used in the 3rd run of the approkimate
system. This process stabilized to a value of 19 = —,077474 after 5
substitutions. (A value of -.074424 was already obtained for /% o)

The closeness of these numbers to the true value in (7.4) suggests that

an empirically assigned ’? is indeed a stable number if data type and

location is fixed and if the dynamical system parameters are constant

and known.,

Figure 2 shows the apparent and true total analysis error a,'é; -r{'e;
obtained for different /P values, as well as the single Kalman point
for reference. In this simple fixed observation system the empirically
determined coefficient seems to be adequate. However, if the observing
system was to change from day to day it could lead to significantly less
accurate analyses than the ideal system would produce. An important

aspect of the figure is the complete unreliability of the apparent

analysis error as a guide to the correctness of the assumed /9 .

8. Behavior of an incorrectly known system.

-Gelb, et. al. (1974, p 232) points out thaf.incorrect specification
of the dynamical constants (ourlﬂt and % ) can lead to malfunctioning
of the Kalman system. In the meteorological context the linear prediction
equations of section 4 would presumably be derived from linearization of
the atmospheric  :equations of motion as suggested‘by Ghil, et. al. (1981).
In this concept the "perturbation"™ is the error and our parameteri/u, and
%/ would be replaced by functions of the analysed field. Thus uncertainty

will be introduced both by the linearization assumption that errors are
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small‘and by uncertainty in the analysed fields. This problem can be
illustrated to some extent with the present 2-point model. One possible
corrective treatment, as one might expect, is to use a value for the
system noise J;:.that is large enough to accomodate, in some sense, our
uncertainty abou§/‘¢ and 2 . The problem is to use only as much added
system noise as necei%ry, since very large noise leads to an analysis
error that is ﬁot much less than the observational error [ cf. (5.5)].
Suppose that the complete Kalman system consisting of (4.11) and

(5.3)-(5.4) is used, but that incorrect values for some of the system

parameters are used, as follows.

"Incorrect” System Correct Value
— - : - ?
€6 = €& = €} €% =€¢ =€,
& =0, &% 0.
(8.1)
T e s = o ptd = _ apR
4IAI = A’z‘a € R 2 4t7,‘: S =€ P
2, = o, A, =,
4 4
I * .
o'z 3% 4t o= Y4 p

In this example then, the observational errors are known correctly, but
the only other system characteristics that are correct are the equality
——c — [ .
of A, R, and ﬁ-zlt& » and the zero value for 2, d& .
As shown in the Appendix, the incorrect system will eventually settle

down to a steady state. In this state the apparent first guess errors are as

follows:

{_'e? = .‘i:& S m= E'-[(R"‘-m—’-l)-o.flk'fail)‘* "e'zj
{-;-FL .0 (8.2)

The analysis weights a(' 6, 1) J in this state are given by (5.3).
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Under conditions (8.2) they are

7N
d=J= 1t+m J

B=%=o0

The true analysis errors of this system are then found by introducing

(8.3)

(8.3) into (5.2). We obtain

ag = (1= 68 v e’

’

w———

a4, = (1) EE vol ‘e;
Qe - (t-ot)? € - (8.4)

where ’{:fk are now the true first guess errors of the incorrect system.
These are in turn prescribed by the prediction system (4.11) using the
correct ¥ and A 2. .
Ve < (
Let us define the following combinations of these true errors:

X -3(\‘.7.7{{&)-:-2@') 7= [ “eﬂ‘]+ ,{[{{]'

et (8.5)
Introduction of these into (8.4) and (4.11) leads to a simple system to

describe their behavior after attainment of the steady state (8.2)-(8.3).

2
- -
X"“ = JZ/X“?'M)T'R) (8.6)
2
zM{.l s 2 Zm (8.7)
where
2= _ (8.8)
(H'm)a

and AL is defined by (8.2). (8.6) has the solution

X = Q"X + (mwarR) -2"): (1-2),

(8.9)



19

where Xé is the value of X at M = & (the beginning of the steady state).
(8.4) shows that the analysis error being made by the incorrect
system is »
i ~ : H]
ey, = lo-oxra] < & 222
¢ l1am)

- (8.10)
ek

Unbounded growth of the true first guess error X now produces unbounded growth
of the analys'is error because the observations are not being used correctly.
[1f X = s - as it would ideally - (8.10) would equal ezm/nr....).]
The incorrect system will therefore produce disastrous results unless
2 &1 . This requires that _ |
R'a* vl e -,//R".‘,o.'_,)‘.,. vy @' > 2Vr, (8.11)

i
1f R = 0, and ¢g’41 , this will be satisfied if and only if &= 1is

also less than 1., If &'2 = @ and 0">I, it is satisfied if and only if
0"2 > o (i.e., 0" need not be as large as & .) We

note however that (8.11) can always be satisfied by making R’z large enough.
A more meaningful criterion is to require that the averaged analysis

error of (8.10) be less than 62 , i1.e., that E = /X‘f'Ma)(I‘f'M)Q‘(’.

This ériterion is relevant because &1 is the analysis error obtained by

completely ignoring the assimilation system. (cf. the discussion in

section 2.) Assuming for the moment that JZ £ | , the asymptotic

value of X from (8.9) is //b'na_(z'f R&)/{l“_ﬂ.) . Thus we

require that

s = X+m® R+mt

-
o

3 - (8.12)
{ 1Tm) (1tan) = T



Figure 3.

0; from (8.13) as a function of

and

W
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be less than 1.
2
Consider first the case where the correct noise is used { R = Rz),
, :
but that @ differs from & . (8.12) and (8.2) can then

be manipulated to show that E  will be greater than 1 if
2
'3 2 5 . (8.3)
2(R+o-1)

Figure 3 shows this relation. It contains the ecritical curves 0"3‘42
in the o, 0"' plane for the indicated fixed valueé of Ra .

If 0"' is used with R" » When the true values are & _and Rl R E-
will exceed 1 if 0" lies to the right of the particular Rt curve
shown in Figure 3. If 0", lies too far to the right the criterionJ2 |
will also be violated anci the true analysis error will be unbounded.

The problem we face then is that if 0', underestimates & we may
have an assimilation system that is worse than no assimilation system at
all. Figure 2 suggests that we might be able to avoid this by using an
artificially increased value of Rt . The problem is to avoid going too

2
far in this direction, since (5.5) shows that at large R® the apparent

value of E will be

- et ]
Eopp " =" R
" (8.14)
The true value will be even larger and we would again be better advised
to ignore assimilation,

Let us suppose that we can confidently set an upper limit 0:“ to

o
the values of &~ and 4~ .

(8.15)
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2
and explore the possibility of replacing the true system noise R by

2

R'" =R*r (q,,-c'), (8.16a)
or — —_ |

2T o R —’ 2

At =at (g, -0')el, (8.16b)

This has the following intuitive justification.sb ezin (8.16b) can be
interpreted as a conservative estimate of the analysis error.

(% - 0”} , which is positive, represents the maximum possible
underestimate of the true dynamical growth rate. The product therefore
represents a reasonably bounded estimate of the additional error caused
in the prediction step by our ignorance of the true ¢ . Returning then

to (8.2) we find from (8.12) that the condition E <l becomes

(8.17)

t &
. R+ Jr'S o 1)rve”™ s R+ 0-07

% :
The definition (8.16a) for R satisfies this requirement even without

the non-negative square root term. We also find that & is now given by

to
42 = -
¢ Y :
[Reg 4] 1+RY

so that our use of the asymptotic value of X in (8.17) is justified.
Figures 4 and 5 illustrate the effect of using (8.16). 1In both
figures e;“ = ¢ and Rz-:. / . The solid curve in each of

these figures gives the true normalized analysis error E for the

5 Gelb also discusses the addition of extra system noise to overcome errors in

modeling system dynamics (p.279,ff).
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Figure 4. True normalized analysis error & as a function of the o’ used
in the assimilation system when the true ¢ is 0.8 (solid
curve). The dashed curve gives & when R?® is replaced by(s,léﬁ),
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"uncorrected"” system that uses 0', (the abscissa) with the original

Rz=l . Figure 4 has the true & equal to 0.8 while Figure 5 has the
true & equal to 3.2. 1In Figure 4 the uncorrected system does not
produce dire results even when it has J": J4e - 1In Figure 5 on the
other hand, the uncorrected system begins to do very poorly when 0"< ,o‘
and produces & values greater than 1 when o’ <, 98 .

The dashed curves show in both figures the true normalized analysis
error E that results from using 0" with Rz’replaced by (8.16a).
They change very little with ﬂ‘" . In Figure 4 the result is not as
good as the uncorrected system, but c’ is still everywhere less thamn 1.
In Figure 5, on the other hand, the loss in accuracy is trivial for
0'1) 2.'{ » while the improvement in accuracy is marked for 0” < Q.V .

The corrective procedure (8.16) is therefore very beneficial when
the true & is greater than 1, but it produces somewhat worse results
when the true @&  is less than 1. 1Its overall benefiﬁ therefore depends
on the likelihood that @ (true) exceeds 1 and the likelihood that when
it does the estimate a‘,of &”(true) will be significantly less than
1.

Other choices than (8.16) are possible in an attempt to cope with
uncertainty in &~ .‘ For example, a surprisingly effective choice is to
use a fixed value of &  such thaﬁ E in (8.12) becomes equal to 1
when 0‘:% o

g - (R%1)"
g = 7 = . (8.19)
208 +R*>1)
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. Figure 6 lists the results obtained when this is done, in comparison with

the ideal results obt;ained by knowing the true & . The results seem

attractive even when the numerator in (8.19) is ne:gative.6

Although both (8.16) and (8.19) have some promise as a way to react
to uncertainty in &~ , it must be remembered that these tests are not
only for a 2-point model, they are performed under conditions where,
because 6;2; ='-i and /l:/z.-.o , the approximate and the true solution
are such that {'{b and QTQ-; are zero., The steady state therefore
depends only on o= kz)z-f-/u‘ , and not on the relative size of 7
and /A— . Furthermore, the convenience of examining only the steady

state results presumes that the incorrect &~ and the true &~ are fixed;

day-to—day variations are not considered.

6 This treatment appears to be an example of the 5; sensitivity measure

. described on page 245 of Gelb.
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APPENDIX
The behavior of the system is easiest to see when the observational errors
are equal (‘c-s-l = é:-é! - e"’ ) and uncorrelated (5;2;30), and
the system noise errors are similar ("";E =./§;$)and also uncorrelated
(Ap;; = o} . The results, in retrospect, appear to have some similarity
with the one-point (“"scalar") system analysed in section (4.3) of Ghil,
et al,

We first define, for convenience,

_ A1 £ {1
m, = —Z;- 9 Ma > —‘-? ) M}': -;-‘- )
(A.1)
and
d, - 24 4. - 2,2, Jg o 4’_5‘
PYIEND : P &? (A.2)

7
44 =4Ar 2 R ‘et
The 0/T analysis equations reduce to
d=e [+ rmm -] -8,
d= [+ (vam-2)] % 4 (4.3)

X
C&: [ #, ]+ ";
4
'«/ = /I+m,)(l-/ma)—-4&} .
The prediction equations are 2
2 2
m! = V°d, + 04 ~avud +R,
R 2
! = pd, 4, ravud +R (A.4)
/

m! = yud, -ynd +(u)%

where the prime denotes /JMJ- for the step after the lﬂtj in (A.3). It is

now convenient to define

2 2
A=M M, G (M) Ay
(4.5)

o= Vz-f;,a"z.
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The system reduces to one in the two variables A and 9'
' ( z L 7.2 ?
A = P/ *t 2(#ta)[+ 2R (4.6)

2
| - A ;

9 " } , )

where in the new notation
o 2
¥J: I+4+ Y {4£'£;)~
A stationary state for non—zero ? exists in (A.7) if ‘P = & . But
., . . . - S Y T

this is not poss;ble for # in (A.6), since A4 3, = ‘I/M,oﬂ‘ ,”5 ),‘ %g)

S
as is R . Therefore ?, must be zero in a steady state. From

this we conclude that

Stea&y state:

2 <) (A.8)

/
(A.6), with 4 T 4= ,7/0% now leads to the solution

WYy = 3!“[(’?‘7‘&-1)4./&2-;0‘-:)2 9 R? ] (4.9)

The analysis errors in the steady state are also equal and uncorrelated

. - - 2 M
a,aq, = a_, 43 = & ___ 2 (A.10)
/*’m‘

The convergence to this steady state in its vicinity depends om

smallness of the ratio

o o
e, = CETr—— i .
A (1tm, ) (A.11)
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This is less than 1 for @=¢| (a damped wave) because 4‘!‘_ 2 0 . For

6~ | we note from (A.9) that H-M‘_ =0 when Rz = 2 » giving us

r/‘lilk":a) = 7'_ <. m

l, increases with R‘ so that 4‘/‘/‘_ is

less than 1 for all Rz when D « However, a special case
occurs for R*=0 and 0=| . This has M“ lbut d‘/lf .
In this case the stationary state has zero errors but convergence to it
will »be extremely slow or non-existent.

The convergence problem at Rz =0 for ¢-=) is made clearer by

noting that

e olms T
( m, ) +61,), (A.12)
and
({{ [4-: e"(c-n}] ﬁa % €0-1)]" + tale®
(A.13)
For =i and & >> 'L/g, ((,“;2‘ v NE and
o -2
— 2
: > ( | + ?) (A.14)

(g )

The slow convergencg that this implies for A 9@ is therefore easier to

understand as a slow convergence arising from very inaccurate observations (hfje G‘).
Evidently when @-= | in this simple model we cannot distinguish

between these limits because the term in (A.13) of highest order in €

is multiplied by @==| « The analysis accuracy QTE, -» €4 1in this

case is of course sensitive to whether & is large or is small.



